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What is the origin of rotational motion? An answer is presented through the study of the dynamics for
spatially localized spots near codimension 2 singularity consisting of drift and peanut instabilities. The drift
instability causes a head-tail asymmetry in spot shape, and the peanut one implies a deformation from circular
to peanut shape. Rotational motion of spots can be produced by combining these instabilities in a class of
three-component reaction-diffusion systems. Partial differential equations dynamics can be reduced to a finite-
dimensional one by projecting it to slow modes. Such a reduction clarifies the bifurcational origin of rotational
motion of traveling spots in two dimensions in close analogy to the normal form of 1:2 mode interactions.
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Spatially localized moving objects such as traveling
pulses and self-propelled particles are fundamental objects
arising in nonlinear science, which display a large variety of
dynamical behaviors in many dissipative systems �1–4�. In
two dimensions, traveling motion causes symmetry breaking
from the circular shape of a standing spot. The onset of a
straight motion of traveling spots has been studied for a drift
instability �3,5,6�, in which the authors showed a drift pitch-
fork scenario from the local properties at a codimension 1
bifurcation. This topic has attracted much interest experi-
mentally as well as theoretically with respect to driven drop-
let patterns on a solid substrate �7–9�. In biological tissues,
digital image analysis also shows that a head-tail asymmetry
in cell shape determines the direction of motion and some
sorts of interference wave pattern occurs during spontaneous
cell migration �10,11�. These recent experiments allow us to
deduce the underlying mechanism of interplay between the
spot locomotion and shape-change dynamics.

In this paper, we consider the spot dynamics near a codi-
mension 2 singularity for reaction-diffusion systems in
which the associated parameter values are located close to
the drift and peanut bifurcation points. Drift instability origi-
nates in the translation-free mode and the associated defor-
mation eigenvector represents a D1 symmetry breaking from
a disk shape. Peanut one is by D2 symmetry-breaking bifur-
cation, corresponding to two-mode deformation, where Dn
stands for the dihedral symmetry group. We show that such a
codimension 2 singularity can induce rotational motion of
traveling spots—that is, rotational spot �RS� motion—in a
class of reaction-diffusion systems.

The occurrence of such a motion is generic because the
original partial differential equations �PDEs� can be reduced
to finite-dimensional ordinary differential equations �ODEs�
based on the center manifold theory �12–14�, and the result-
ing ODEs take a normal form of 1:2 mode interaction of
cubic type. We analyze the reduced ODEs, and show that
there exists a solution in which both drift velocity vector and
peanut deformation become time-periodic functions that cor-
respond to the rotational motion of traveling spot solution to
the original reaction-diffusion systems. The information spe-
cific to the form and parameters of the original PDEs is con-

tained in the coefficients of the reduced system. We also
discuss about the relationship between the global bifurca-
tional structures of the original PDEs and the reduced ODEs,
which sheds light on the origin of rotational motion, that is,
such a motion emerges through the interaction between drift
and peanut instabilities and it is realized in the PDE counter-
part, i.e., the three-component reaction-diffusion system.

A general setup for the PDE system in a neighborhood of
codimension 2 bifurcation point �c= ��1

c ,�2
c� reads, with a

small parameter �= ��1 ,�2� as �=�c+�,

ut = D�u + F�u;�� � L�u;�c� + �
i=1

2

�igi�u� , �1�

where gi �i=1,2� is N-dimensional vector-valued functions.
Let Xª �L2�R��N, u�t ,r�= �u1 , ¯ ,uN�T�X, be an
N-dimensional vector and F :RN→RN, D be a positive diag-
onal matrix. We assume that the nontrivial standing spot so-
lution S�r ;�� exists at �=�c, i.e., L�S ;�c�=0.

Let L be the linearized operator L=L��S�r ;�c��. L has a
codimension 2 singularity at �=�c consisting of drift and
peanut bifurcations in addition to the translation-free 0 ei-
genvalue; that is, there exist three types of eigenfunctions
�i�r�, �i�r�, and �i�r� �i=1,2� such that L�i=0, L�i=−�i,
and L�i=0, where �i=�S /�xi and �i represents the deforma-
tion vector with Jordan form for the drift bifurcation. �i

� is
the D2-symmetry breaking eigenfunction of peanut shape.

Similar properties also hold for L�, that is, there exist �i
�,

�i
�, and �i

� such that L��i
�=0, L��i

�=−�i
�, and L��i

�=0. Let
E=span��i ,�i ,�i� and the eigenfunctions be normalized by
	�i ,� j
L2 = 	�i ,� j

�
L2 =0, and

	�i,� j
�
L2 = 	�i,� j

�
L2 = 	�i,� j
�
L2 = �� , i = j

0, i � j .
� �2�

The motion of a spot solution u is essentially described by
the two-dimensional vector functions of time t; p= �p1 , p2�
denotes the location of the spot; q= �q1 ,q2� denotes its veloc-
ity; and s= �s1 ,s2� denotes its deformation. For small �, we
can approximate a solution u by
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U = ��p��S�r� + �i=1

2
qi�i�r� + �i=1

2
si�i�r� + �†� , �3�

where ��p� is the translation operator with ���p�u��r�
=u�r−p�. The remaining term �† belongs to E�. More pre-
cisely, �†=q1

2�1+q2
2�2+q1q2�3+s1

2�4+s2
2�5+s1s2�6+q1s1�7

+q2s2�8+q1s2�9+q2s1�10+�1�11+�2�12 with �k�k=1, ¯12�
�E� are defined by solutions of

L�1 +
1

2
F��S��1

2 + �1x1
= ��1,

L�2 +
1

2
F��S��2

2 + �2x2
= − ��1,

L�3 + F��S��1�2 + �1x2
+ �2x1

= 2��2, �4�

and

L�4 +
1

2
F��S��1

2 = 0,

L�5 +
1

2
F��S��2

2 = 0,

L�6 + F��S��1�2 = 0, �5�

and

L�7 + F��S��1�1 + �1x1
= ��1 + ���1,

L�8 + F��S��2�2 + �2x2
= ��1 + ���1,

L�9 + F��S��1�2 + �2x1
= ��2 + ���2,

L�10 + F��S��2�1 + �1x2
= − ��2 − ���2, �6�

and

L�11 + g1�S� = 0,

L�12 + g2�S� = 0, �7�

where �, �, and �� are constants satisfying the following
conditions:

	F��S��1�2 + �1x2
+ �2x1

− 2��2,�2
�
L2 = 0,

	F��S��1�2 + �2x1
− ��2 − ���2,�2

�
L2 = 0,

	F��S��1�2 + �2x1
− ��2 − ���2,�2

�
L2 = 0. �8�

Substituting Eq. �3� into Eq. �1� and taking the inner product
with the adjoint eigenfunctions, the principal part of the re-
duced ODEs for �pi ,qi ,si� is given by

ż0 = z1 − ��z̄1z2,

ż1 = M1z12z1 + M2z22z1 + M3z1 + �z̄1z2,

ż2 = N1z22z2 + N2z12z2 + N3z2 + �z1
2. �9�

Here we introduce the complex variables z0= p1+ ip2,
z1=q1+ iq2, and z2=s1+ is2. Note that �† with the conditions
of Eqs. �4�–�7� is necessary for computations of cubic terms
in Eq. �9�.

The constants M1, M2, and M3 are obtained from the
model system �1� as follows:

�M1 =
1

6
	F��S��1

3,�1
�
L2 + 	F��S��1�1,�1

�
L2 + 	�1x1
,�1

�
L2,

�M2 =
1

2
	F��S��1

2�1,�1
�
L2 + 	F��S��1�4,�1

�
L2

+ 	F��S��1�7,�1
�
L2 + 	�4x1

,�1
�
L2 − ��	�1x1

,�1
�
L2,

�M3 = �1�	F��S��1�11,�1
�
L2 + 	g1��S��1,�1

�
L2

+ 	�11x1
,�1

�
L2� + �2�	F��S��1�12,�1
�
L2

+ 	g2��S��1,�1
�
L2 + 	�12x1

,�1
�
L2� . �10�

The constants N1, N2, and N3 are also obtained as follows:

�N1 =
1

6
	F��S��1

3,�1
�
L2 + 	F��S��1�4,�1

�
L2,

�N2 =
1

2
	F��S��1

2�1,�1
�
L2 + 	F��S��1�7,�1

�
L2

+ 	F��S��1�1,�1
�
L2 + 	�7x1

,�1
�
L2 − ��	�1x1

,�1
�
L2,

�N3 = �1�	F��S��1�11,�1
�
L2 + 	g1��S��1,�1

�
L2�

+ �2�	F��S��1�12,�1
�
L2 + 	g2��S��1,�1

�
L2� . �11�

The bifurcation properties are determined by the coefficients
of Eqs. �10� and �11�, especially their signs, to the reduced
systems. The derivations are shown in Appendixes A and B.

The dynamics of Eq. �9� are essentially governed by the
last two equations, exactly the same as the normal form ob-
tained in the study of resonance patterns in a bilayer fluid
under O�2�-symmetry operations �15,16�. It is natural that
the relationship between drift and peanut deformations
viewed from a circular shape is analogous to the 1:2 mode
interactions. Letting z1=Qei	 and z2=Sei
, we rewrite Eq.
�9� as

Q̇ = �M1Q2 + M2S2 + M3�Q + �QS cos � ,

Ṡ = �N1S2 + N2Q2 + N3�S + �Q2 cos � ,

�̇ = − �2�S +
�Q2

S
�sin � , �12�

where we set �=
−2	. In addition to the trivial standing
disk �SD� spot of Q=S=0, we have the fixed points of Eq.
�12� with cos �=1 as the standing peanut �SP� spot of
Q=0 and S2=−N3 /N1. Hereafter we use �M3 ,N3� as the new
bifurcation parameter set.
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The traveling spot solution of Eq. �13� bifurcates
from the SD spot at M3=0 and from the SP spot at
M3−M2N3 /N1���−N3 /N1�1/2=0,

M1Q2 + M2S2 + M3 � �S = 0,

�N1S2 + N2Q2 + N3�S � �Q2 = 0, �13�

where the traveling spot TS0 with cos �=1 �TS� with
cos �=−1� corresponds to a propagation direction parallel
�perpendicular� to the long axis of the deformed shape. The
stability and its properties of traveling spot solutions can be
obtained by investigating the linearized system of Eq. �9�.

As a representative model system fitting our framework,
we employ the following activator-substrate-inhibitor
reaction-diffusion system:

ut = Du � u −
uv2

1 + f2w
+ f0�1 − u� ,

vt = Dv � v +
uv2

1 + f2w
− �f0 + f1�v ,

�wt = Dw � w + f3�v − w� , �14�

where we set the parameter values f0=0.05, f2=0.5, f3=0.2,
�Du ,Dv ,Dw�= �2.010−4 ,1.010−4 ,5.010−4�, and �=40
�4�. As shown in Fig. 1�a�, by numerical analysis of Eq. �14�,
we found that the drift and peanut bifurcations occur on the
SD branch and the profiles of the associated eigenfunctions
are shown in Fig. 1�c�. The SP branch appears subcritically
at f1�0.0592 and traveling spot solutions of TS� and TS0
emanate from the drift bifurcation points at f1�0.0605 and
0.0617 on the SP branch, respectively. Especially, the solu-
tion profile of TS� is deformed from peanut shape to disk
shape via saddle-node bifurcation. Its stability property
changes from saddle to unstable spiral just after the saddle-
node point at f1�0.060 27. As shown in Figs. 1�a� and 1�b�,
TS� recovers its stability via Hopf bifurcation at
f1�0.060 34 and end up with the drift bifurcation point at
f1�0.0624 on the SD branch. We also detect pitchfork bi-
furcations at f1�0.060 32 and 0.061 07 on the TS� and TS0
branches; the profiles for the associated eigenfunctions of ��

and �0, respectively, show asymmetry perpendicular to the
propagation direction as shown in Fig. 1�d�. A plausible sce-
nario is that rotational spot solutions for Eq. �14� described
later originate in those pitchfork bifurcations. On the other
hand, it is confirmed in the reduced ODEs that RS solutions
emerge from such bifurcation points as is discussed below.
The solution of Eq. �13� becomes unstable when the coeffi-
cient of the angle equation of Eq. �12� is positive. That is, the
following solutions of Eq. �15� with cos ��1 emanate via
pitchfork bifurcation,

Q2 = �−
2�

�
�S2 = �−

2�

�
�N3 + 2M3

K
,

cos2 � =
�N3�M2 − 2�M1/�� − M3�N1 − 2�N2/���2

�2�N3 + 2M3�K
,

�15�

where K=4�M1 /�−2M2−N1+2�N2 /�. Accordingly,
we solve the slave part in Eq. �9� as z0
= �2 /���1/2���Sei�0 −1�ei�S sin �t /sin �, where �0 is constant.
This allows the occurrence of RS motion with radius
z02=2����S�2−1� / ��� sin2 �� for cos �0= ���S�−1. Since

the phase speed 
̇=2	̇=2�S sin � becomes zero at the pitch-
fork bifurcation point of cos �=1, where Q and � are con-
tinuous, clockwise and counterclockwise rotational motions
with an infinite radius are equally possible to emanate from a
straight motion. Here we consider ���0 which is numeri-
cally confirmed as ��−31.8, ��1.0, and ���−326.7 from
Eq. �8�. The constants of Eqs. �10� and �11� are also com-
puted as M1�−61.3, M2�−3.9, N1�−240.0, and
N2�−35.6, for which the eigenfunctions are normalized to
satisfy the conditions of Eq. �2�. Figures 2�a�–2�c� show the
RS solution for the ODE dynamics of Eq. �9�, in which the
other parameter values are set to �M3 ,N3�= �0.02,0.1�. A bi-
furcation leading to the onset of RS motion is also shown in
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FIG. 1. �Color� �a� Bifurcation diagram of traveling spot solu-
tions in the PDE system of Eq. �11�. The solid and gray lines indi-
cate the stable and unstable solutions. The corresponding traveling
velocity c is shown in �b�. The black and white squares indicate the
pitchfork and Hopf points and the black disks show the saddle-node
points, respectively. The inset shows the magnified saddle-node
point for TS� branch with eigenvalues distribution. Just before this
point, the Hopf and pitchfork bifurcations occur. Note that the tip
splitting occurs for TS0 solutions via a saddle-node bifurcation, and
it is expected that its branch ends up to the stationary D3 spot. �c�
Profiles of eigenfunctions of standing disk spot solutions at the
bifurcation points: translation-free mode 	1 and deformation vector

1 at the drift bifurcation point; peanut mode �1 at the peanut bi-
furcation point. �d� Profiles of the symmetry-breaking eigenfunc-
tions of �� and �0 at the pitchfork bifurcation points for TS� and
TS0 solutions. Only the v component is shown here. Spectral com-
putations are done with the system size 1.51.5.

ROTATIONAL MOTION OF TRAVELING SPOTS IN… PHYSICAL REVIEW E 80, 046208 �2009�

046208-3



Figs. 2�d� and 2�e�. A stable RS branch emanates from pitch-
fork bifurcations on the TS branches and connects smoothly
between the two types of straight motions of TS0 and TS�.
The system of Eq. �12� inherits the variety of spot dynamics
associated with global behaviors of bifurcation branches, in-
cluding the hidden unstable branches. We assume that M1,
M2, N1, and N2 are negative and either M3 or N3 is positive.
Their values can be tuned up to realize the saddle-node struc-
ture of the TS� branch, which is the case for the PDE struc-
ture of Fig. 1�a�, by analyzing Eq. �13� for
�M1 ,M2 ,N1 ,N2�= �−8,−2,−1,−10� as shown in Fig. 2�f�.
More systematic calculations of bifurcational structures for
1:2 mode interaction dynamics were carried out by Holmes
et al. �16,17�.

In searching the PDE dynamics for the parameter region
close to the saddle-node point in Fig. 1�a�, we find the RS
motion for f1� �0.06031:0.06036�. Its trajectory of centroid
of v-component distribution draws a circle as shown in Fig.
3�a�. Figures 3�b� and 3�c� show the spatiotemporal patterns
of the v-component profiles along the trace of centroids and
circular mapping plot v�t ,	�. A spot almost maintains the
shape and rotates with constant velocity. However, there is a
small internal breathing motion as the time variation in L2

slightly oscillates four times during a rotation as shown in

Fig. 3�d�. When f1 decreases, both radius and period of RS
motion decrease. As f1 continues to decrease, modulatory
instability occurs and grows, resulting in a spot splitting be-
havior. Investigation of the linearization of Eq. �12� shows
that the RS solution of Eq. �15� loses its stability via Torus
bifurcation and unstable modulatory spot motion, for which
both amplitude and phase change in time, may emanate and
end up with a heteroclinic bifurcation on the SP branch. The
details are left for future work.

In summary, we have studied the localized spot dynamics
near the drift and peanut codimension 2 singularity in a class
of three-component reaction-diffusion systems. Interaction
between the D1 and D2 symmetry-breaking deformations
viewed from a D� shape of a SD spot is analogous to 1:2
resonance patterns. It turns out that the corresponding bifur-
cations and the resulting straight motions of TS0 and TS� are
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FIG. 2. �a,b,c� 1:2 mode interaction in a rotational spot �RS�
motion for ODE of Eq. �6�. Real �solid line� and imaginary �dotted
line� parts are shown in �b� and �c�. �d� Bifurcation diagram of spot
solutions for the ODEs of Eq. �9�, where N3 is fixed to 0.1. Stable
RS motion appears via pitchfork bifurcations and connects between
the TS0 and TS� branches. White disk indicates the unstable
breather solution. �e� Radius z0 �solid line� and angle � �gray line�
change of RS motion. �f� RS motion loses its stability via Torus
bifurcation and MS motion �white disk� emanates, where M3 is
fixed to 1.

(a)

0.0

0.2

0.4

x2

-1.0 0.0 1.0x

0.0

1.0

1

3T/4

t=0 T/4

T/2

T0
0

2π

(b) tT

φ

0

2π

ψ

0t (c)

(d)

T

0.0 2.0
t

1.0
104

0.0

-0.2

v1,2
L2

1.9740

1.9748

0.5 1.5

FIG. 3. Rotational spot �RS� motion in the PDE system of Eq.
�11�. �a� A spot moves in a counterclockwise direction as observed
in four superimposed snapshots at f1�0.060 35. The trajectory of
the centroid of the v-component distribution is depicted by the solid
line. The radius of RS motion is estimated as 0.31. �b� Spatiotem-
poral pattern of the v-component profile v�t ,	� along the trace of
the centroid. �c� Circular mapping of v�t ,
� as the radial profile of
v component from the centroid, as indicated by the dotted circle in
�a�. 
=0 is fixed in the x axis and the radius is set to 0.125. �d�
Time evolutions of propagation velocity components �v1 ,v2� and L2

norms are shown by solid, dotted, and gray lines, respectively. We
estimate the time periods for RS motion as T�3.9103. Compu-
tations are carried out with system size 44 subject to the periodic
boundary condition. The grid sizes are �x=�y=2−6 and �t=0.10.
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crucial for understanding the onset of rotational motion of
traveling spots in two dimensions.
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APPENDIX A: CONSTANTS M1, M2, AND M3

In the appendix, we will give the derivations of Eqs. �10�
and �11�. The basic idea is shown in �13�, however, it is
technically complicated to derive their explicit form for codi-
mension 2 singularity in two dimensions.

Since ���p�u�t=−��p�	ṗ ,�u
L2 holds, we have

ut = − ��p�	ṗ,�u
L2 + ��p���
i=1

2

q̇i�i + �
i=1

2

ṡi�i�
= ��p��− 	ṗ,�u
L2 + �

i=1

2

q̇i�i + �
i=1

2

ṡi�i� , �A1�

where 	ṗ ,�u
L2 = 	p ,�S
L2 +q1	ṗ ,��1
L2 +q2	ṗ ,��2
L2

+s1	ṗ ,��1
L2 +s2	ṗ ,��2
L2 + 	ṗ ,��†
L2 and

L�u� + �
i=1

2

�igi�u�

= ��P��− �
i=1

2

qi	i + L�† +
1

2
F��S�W2 +

1

6
F��S�W3

+ �
i=1

2

�igi�S� + �
i=1

2

�igi��S�W� , �A2�

where W=�i=1
2 qi�i�r�+�i=1

2 si�i�r�+�†. Here we will convert
the equation of Eq. �1� of u to that of �p ,q ,s�. Taking the
inner products with �i

� �i=1,2�, we have

	ut,�1
�
L2 = − ṗ1	�1,�1

�
L2 − ṗ1s1	�1x1
,�1

�
L2

− ṗ2s2	�2x2
,�1

�
L2,

�L�u� + �
i=1

2

�igi�u�,�1
��

L2

= − q1	�1,�1
�
L2

+ q1s1	L�7 + F��S��1�1,�1
�
L2

+ q2s2	L�8 + F��S��2�2,�1
�
L2,

	ut,�2
�
L2 = − ṗ2	�2,�2

�
L2 − ṗ1s2	�2x1
,�2

�
L2

− ṗ2s1	�1x2
,�2

�
L2,

�L�u� + �
i=1

2

�igi�u�,�2
��

L2

= − q2	�2,�2
�
L2

+ q1s2	L�9 + F��S��1�2,�2
�
L2

+ q2s1	L�10

+ F��S��2�1,�2
�
L2, �A3�

where we show only nonzero terms. Since �1=cos �
�r�,
�1=cos �	�r�, and �1=cos 2���r� and so on, we can rewrite
Eq. �8� as

�F��S�
2 + 2�
r −



r
� − 2��,��� = 0,

�F��S�
� + �r +
2�

r
− �
 − ��	,	�� = 0,

�F��S�
� + �r +
2�

r
− �
 − ��	,
�� = 0. �A4�

We know that ṗ1=q1−���q1s1+q2s2� and ṗ2=q2−���q1s2
−q2s1�, respectively. Next, in order to obtain the equation of
motion of qi, we take the inner products with �i

��i=1,2� as

	ut,�1
�
L2 = − ṗ1	�x1

† ,�1
�
L2 + q̇1	�1,�1

�
L2

=�L�u� + �
i=1

2

�igi�u�,�1
��

L2

,

	ut,�2
�
L2 = − ṗ2	�x2

† ,�2
�
L2 + q̇2	�2,�2

�
L2

=�L�u� + �
i=1

2

�igi�u�,�2
��

L2

. �A5�

Computing each term of Eq. �A3�, the first term of M1 is
given as

1

6
	F��S��1

3,�1
�
L2 =

1

6
�

0

2�

cos4 �d��
0

�

r	F��S�
3,	�
dr

=
�

8
�

0

�

r	F��S�
3,	�
dr . �A6�

By similar calculations to the above, we have

1

6
	F��S��1

3,�1
�
L2 =

1

2
	F��S��1�2

2,�1
�
L2

=
1

6
	F��S��2

3,�2
�
L2

=
1

2
	F��S��1

2�2,�2
�
L2 � �M1�.

�A7�

We can rewrite Eq. �4� as

L�1 +
1

2
F��S�cos2 �
2 + cos2 �
r + sin2 �




r
= � cos 2�� ,
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L�2 +
1

2
F��S�sin2 �
2 + sin2 �
r + cos2 �




r
= − � cos 2�� ,

L�3 + F��S�sin � cos �
2 + 2 sin � cos ��
r −



r
�

= 2� sin 2�� . �A8�

The term of �1−�2 satisfies

− L��1 − �2� =
1

2
�cos2 � − sin2 ���F��S�
2 + 2�
r −




r
��

− 2� cos 2��

=
1

2
sin�2� +

�

2
��F��S�
2 + 2�
r −




r
� − 4��� .

�A9�

Hence we have ��1−�2��r ,��=�3�r ,�+ �
4 �. We note that �1

=cos2 ��̃1�r�+sin2 ��̃2�r�, �2=sin2 ��̃1�r�+cos2 ��̃2�r�,
and �3=sin 2��̃3�r� hold. It is easy to see that �2�r ,��
=�1�r ,�+ �

2 �. Thus, the second term of M1 has the following:

	F��S��1�1,�1
�
L2 = �

0

2� �
0

�

cos2 �r	F��S�
�1,	�
drd�

=
3�

4
�

0

�

r	F�
�̃1,	�
dr

+
�

4
�

0

�

r	F�
�̃2,	�
dr . �A10�

Similarly, we have

	F��S��1�1,�1
�
L2 = 	F��S��1�2,�1

�
L2 + 	F��S��2�3,�1
�
L2

= 	F��S��2�2,�2
�
L2

= 	F��S��2�1,�2
�
L2 + 	F��S��1�3,�2

�
L2

� �M1�, �A11�

where we use the relation of �̃1�r�− �̃2�r�= �̃3�r�. The last
term of M1 is obtained as

	�1x1
,�1

�
L2 = �
0

2� �
0

�

cos2 �r	�1r,	
�
drd�

− �
0

2� �
0

�

sin � cos �	�1�,	�
drd�

=
3�

4
�

0

�

r	�̃1r,	
�
dr +

�

4
�

0

�

r	�̃2r,	
�
dr

−
�

2
�

0

�

	�̃2 − �̃1,	�
dr . �A12�

Here, we also have

	�1x1
,�1

�
L2 − 	�2x1
,�1

�
L2 − 	�3x2
,�1

�
L2

=
�

2
�

0

�

r	�̃1r,	
�
dr −

�

2
�

0

�

r	�̃2r,	
�
dr

+ ��
0

�

	�̃1 − �̃2,	�
dr −
�

2
�

0

�

r	�̃3r,	
�
dr

− ��
0

�

	�̃3,	�
dr = 0. �A13�

In view of the above results, we have

	�1x1
,�1

�
L2 = 	�2x1
,�1

�
L2 + 	�3x2
,�1

�
L2

= 	�2x2
,�2

�
L2

= 	�1x2
,�2

�
L2 + 	�3x1
,�2

�
L2

� �M1�. �A14�

In this way, we obtain M1=M1�+M1�+M1�.
Let us now rewrite Eq. �5� as

L�4 +
1

2
F��S�cos2 2��2 = 0,

L�5 +
1

2
F��S�sin2 2��2 = 0,

L�6 + F��S�sin 2� cos 2��2 = 0. �A15�

We note that �4=cos2 2��̃4, �5=sin2 2��̃5, and �6=sin 4��̃6.
It is easy to see that �5�r ,��=�4�r ,�+ �

4 �. The term of
�4−�5 satisfies

− L��4 − �5� =
1

2
�cos2 2� − sin2 2��F��S��2

=
1

2
sin�4� +

�

2
�F��S��2.

Hence we have ��4−�5��r ,��=�6�r ,�+ �
8 �. We can rewrite

Eq. �6� as

L�7 + F��S�cos � cos 2�
� + cos � cos 2��r + sin � sin 2�
2�

r

= cos ���
 + ��	� ,

L�8 + F��S�sin � sin 2�
� + sin � sin 2��r + cos � cos 2�
2�

r

= cos ���
 + ��	� ,

L�9 + F��S�cos � sin 2�
� + cos � sin 2��r − sin � cos 2�
2�

r

= sin ���
 + ��	� ,
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L�10 + F��S�sin � cos 2�
� + sin � cos 2��r

− cos � sin 2�
2�

r
= − sin ���
 + ��	� . �A16�

We note that �7=cos � cos 2��̃7+sin � sin 2��̃8,

�8=sin � sin 2��̃7+cos � cos 2��̃8, �9=cos � sin 2��̃9

+sin � cos 2��̃10, and �10=sin � cos 2��̃9+cos � sin 2��̃10.
The terms of �7��8 satisfy

− L��7 + �8� = �cos � cos 2� + sin � sin 2��

�F��S�
� + �r −
2�

r
� − 2 cos ���
 + ��	�

= cos ��F��S�
� + �r −
2�

r
− 2��
 + ��	�� ,

�A17�

− L��7 − �8� = �cos � cos 2� − sin � sin 2��

�F��S�
� + �r −
2�

r
�

= cos 3��F��S�
� + �r −
2�

r
� , �A18�

and the terms of �9��10 satisfy

− L��9 + �10� = �cos � sin 2� + sin � cos 2��

�F��S�
� + �r −
2�

r
�

= sin 3��F��S�
� + �r −
2�

r
� , �A19�

− L��9 − �10� = �cos � sin 2� − sin � cos 2��

�F��S�
� + �r −
2�

r
� − 2 sin ���
 + ��	�

= sin ��F��S�
� + �r −
2�

r
− 2��
 + ��	�� .

�A20�

Hence we have ��7+�8��r ,��= ��9−�10��r ,�+ �
2 � and

��7−�8��r ,��= ��9+�10��r ,�+ �
6 �. The first three terms of M2

are given as

� 1

2
F��S��1

2�1 + F��S��1�4 + F��S��1�7,�1
��

L2

=
1

2
�

0

2�

cos2 � cos2 2�d��
0

�

r	F��S��2
,	�
dr

+ �
0

2�

cos2 � cos2 2�d��
0

�

r	F��S��̃4
,	�
dr

+ �
0

2�

cos2 � cos2 2�d��
0

�

r	F��S��̃7�,	�
dr

+ �
0

2�

sin � cos � sin 2� cos2�d��
0

�

r	F��S��̃8�,	�
dr

=
�

4
�

0

�

r	F��S��2
,	�
dr +
�

2
�

0

�

r	F��S��̃4
,	�
dr

+
�

2
�

0

�

r	F��S��̃7�,	�
dr . �A21�

Quite similarly, we have

� 1

2
F��S��1

2�1 + F��S��1�4 + F��S��1�7,�1
��

L2

= � 1

2
F��S��1

2�2 + F��S��2�4 + F��S��1�10,�2
��

L2

= � 1

2
F��S��2

2�2 + F��S��2�5 + F��S��2�8,�2
��

L2

= � 1

2
F��S��2

2�1 + F��S��1�5 + F��S��2�9,�1
��

L2
� �M2�.

�A22�

Here we use �̃4�r�= �̃5�r�= �̃6�r� and �̃7�r�= �̃9�r� and �̃8�r�=

−�̃10�r�. The last two terms of M2 are obtained as

	�4x1
,�1

�
L2 = �
0

2�

cos2 � cos2 2�d��
0

�

r	�̃4r,	
�
dr

+ 4�
0

2�

sin � cos � sin 2� cos 2�d�

�
0

�

	�̃4,	�
dr

=
�

2
�

0

�

r	�̃4r,	
�
dr �A23�

and

	�1x1
,�1

�
L2 = �
0

2�

cos2 � cos 2�d��
0

�

r	�r,	
�
dr

+ 2�
0

2�

sin � cos � sin 2�d��
0

�

	�,	�
dr

=
�

2
�

0

�

r	�r,	
�
dr + ��

0

�

	�,	�
dr . �A24�

By similar calculations to the above, we have

	�4x1
,�1

�
L2 = 	�5x2
,�2

�
L2 = 	�4x2
,�2

�
L2 = 	�5x1
,�1

�
L2 � �M2�

�A25�

and
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	�1x1
,�1

�
L2 = 	�2x1
,�2

�
L2

= 	�2x2
,�1

�
L2

= − 	�1x2
,�2

�
L2

� �M2�. �A26�

In this way, we obtain M2=M2�+M2�−��M2�. The terms of
M3 are shown quite similarly as

	F��S��1�11,�1
�
L2 + 	g1��S��1,�1

�
L2

= �
0

2�

cos2 �d��
0

�

r	F��S�
�11,	
�
dr

+ �
0

2�

cos2 �d��
0

�

r	g1��S�
,	�
dr

= ��
0

�

r	F��S�
�̃11,	
�
dr + ��

0

�

r	g1��S�
,	�
dr

= 	F��S��2�11,�2
�
L2 + 	g1��S��2,�2

�
L2 � �M3� �A27�

and

	F��S��1�12,�1
�
L2 + 	g2��S��1,�1

�
L2

= �
0

2�

cos2 �d��
0

�

r	F��S�
�12,	
�
dr

+ �
0

2�

cos2 �d��
0

�

r	g2��S�
,	�
dr

= ��
0

�

r	F��S�
�̃12,	
�
dr + ��

0

�

r	g2��S�
,	�
dr

= 	F��S��2�12,�2
�
L2 + 	g2��S��2,�2

�
L2 � �M3�.

�A28�

Here �11 and �12 are radially symmetric as �11= �̃11�r� and

�12= �̃12�r�, respectively. The last term to M3 is obtained as

	�11x1
,�1

�
L2 = �
0

2�

cos2 �d��
0

�

r	�11r,	
�
dr

= ��
0

�

r	�̃11r,	
�
dr

= 	�11x2
,�2

�
L2

� �M3� �A29�

and

	�12x1
,�1

�
L2 = �
0

2�

cos2 �d��
0

�

r	�12r,	
�
dr

= ��
0

�

r	�̃12r,	
�
dr

= 	�12x2
,�2

�
L2

� �M3� . �A30�

We arrive at the results of M3=�1�M3�+M3��+�2�M3�+M3��.
It is remarked that, for numerical computations of the con-
stants, we shall normalize eigenfunctions of �i

0 ,�i
�0 ,�i

�0 ob-
tained from numerical spectral analysis. According to Eq.
�2�, the eigenfunctions are given by

�i = �i
0 −

	�i,�i
0
L2

	�i,�i
L2
�i,

�i
� =

�

	�i,�i
�0
L2

�i
�0,

�i
� =

�

	�i,�i
�0
L2

�i
�0 +

�

	�i
0,�i

�0
L2
� 	�i,�i

0
L2

	�i,�i
L2

−
	�i

0,�i
�0
L2

	�i,�i
�0
L2

��i
�0. �A31�

APPENDIX B: CONSTANTS N1, N2, AND N3

By similar calculations to those shown in the previous
subsection, we have

	F��S��1�11,�1
�
L2 + 	g1��S��1,�1

�
L2

= �
0

2�

cos2 2�d��
0

�

r	F��S���11,�
�
dr

+ �
0

2�

cos2 2�d��
0

�

r	g1��S��,��
dr

= ��
0

�

r	F��S���̃11,�
�
dr + ��

0

�

r	g1��S��,��
dr

= 	F��S��2�11,�2
�
L2 + 	g1��S��2,�2

�
L2

� �N3� �B1�

and
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	F��S��1�12,�1
�
L2 + 	g2��S��1,�1

�
L2

= �
0

2�

cos2 2�d��
0

�

r	F��S���12,�
�
dr

+ �
0

2�

cos2 2�d��
0

�

r	g2��S��,��
dr

= ��
0

�

r	F��S���̃12,�
�
dr + ��

0

�

r	g2��S��,��
dr

= 	F��S��2�12,�2
�
L2 + 	g2��S��2,�2

�
L2

� �N3�. �B2�

Here we take the inner product with �i
��i=1,2� and obtain

N3=�1N3�+�2N3�. The first term of N1 is given as

1

6
	F��S��1

3,�1
�
L2 =

1

6
�

0

2�

cos4 2�d��
0

�

r	F��S��3,��
dr

=
�

8
�

0

�

r	F��S��3,��
dr . �B3�

Moreover, we have

1

6
	F��S��1

3,�1
�
L2 =

1

2
	F��S��1�2

2,�1
�
L2 =

1

6
	F��S��2

3,�2
�
L2

=
1

2
	F��S��1

2�2,�2
�
L2 � �N1�. �B4�

We show the second term of N1 as

	F��S��1�4,�1
�
L2 = �

0

2�

cos4 2�d��
0

�

r	F��S���̃4,��
dr

=
3�

4
�

0

�

r	F��S���̃4,��
dr . �B5�

By similar calculations to the above, we have

	F��S��1�4,�1
�
L2 = 	F��S��1�5,�1

�
L2 + 	F��S��2�6,�1
�
L2

= 	F��S��2�5,�2
�
L2 = 	F��S��1�6,�2

�
L2

+ 	F��S��2�4,�2
�
L2 � �N1�. �B6�

In this way, we obtain N1=N1�+N1�.
Last, we shall consider the first three terms of N2 as

� 1

2
F��S��1

2�1 + F��S��1�7 + F��S��1�1,�1
��

L2

=
1

2
�

0

2�

cos2 � cos2 2�d��
0

�

r	F��S�
2�,��
dr + �
0

2�

cos2 � cos2 2�d��
0

�

r	F��S��̃7
,��
dr

+ �
0

2�

sin � cos � sin 2� cos 2�d��
0

�

r	F��S��̃8
,��
dr + �
0

2�

cos2 � cos2 2�d��
0

�

r	F��S��̃1�,��
dr

+ �
0

2�

sin2 � cos2 2�d��
0

�

r	F��S��̃2�,��
dr

=
�

4
�

0

�

r	F��S�
2�,��
dr +
�

2
�

0

�

r	F��S��̃7
,��
dr +
�

2
�

0

�

r	F��S���̃1 + �̃2��,��
dr . �B7�

Similarly, we have

� 1

2
F��S��1

2�1 + F��S��1�7 + F��S��1�1,�1
��

L2

= � 1

2
F��S��1

2�2 + F��S��1�9 + F��S��2�1,�2
��

L2

= � 1

2
F��S��2

2�2 + F��S��2�8 + F��S��2�2,�2
��

L2

= � 1

2
F��S��2

2�1 + F��S��2�10 + F��S��1�2,�1
��

L2

� �N2�. �B8�

The last two terms of N2 are obtained as
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	�7x1
,�1

�
L2 = �
0

2�

cos2 � cos2 2�d��
0

�

r	�̃7r,�
�
dr + �

0

2�

sin � cos � sin 2� cos 2�d��
0

�

r	�̃8r,�
�
dr

+ �
0

2�

sin2 � cos2 2�d��
0

�

	�̃7,��
dr + 2�
0

2�

sin � cos � sin 2� cos 2�d��
0

�

	�̃7,��
dr

− �
0

2�

sin � cos � sin 2� cos 2�d��
0

�

	�̃8,��
dr − 2�
0

2�

sin2 � cos2 2�d��
0

�

	�̃8,��
dr

=
�

2
�

0

�

r	�̃7r,�
�
dr +

�

2
�

0

�

	�̃7,��
dr − ��
0

�

	�̃8,��
dr �B9�

and

	�1x1
,�1

�
L2 = �
0

2�

cos2 � cos 2�d��
0

�

r	
r,�
�
dr

+ �
0

2�

sin2 � cos 2�d��
0

�

	
,��
dr

=
�

2
�

0

�

r�
r −



r
,���dr . �B10�

Similarly as before, we have

	�7x1
,�1

�
L2 = 	�9x1
,�2

�
L2 = 	�8x2
,�2

�
L2 = 	�10x2
,�1

�
L2 � �N2�

�B11�

and

	�1x1
,�1

�
L2 = 	�1x2
,�2

�
L2 = 	�2x1
,�2

�
L2 = − 	�2x2
,�1

�
L2

� �N2�. �B12�

Therefore, we arrive at N2=N2�+N2�−��N2�.
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